Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 192-206, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597079

RESUMO

OBJECTIVES: This study aimed to explore the expression trends of innate immune cells and immune-checkpoint molecules validated by data calculation in the process of oral mucosal carcinogenesis, as well as to explore methods of suppressing oral mucosal carcinogenesis based on immunotherapy by predicting their interactions. Me-thods 1) The cancer genome atlas (TCGA) database comprehensively scores immune cells and immune-checkpoint molecules in the process of oral mucosal carcinogenesis and screens out intrinsic immune cells and immune-checkpoint molecules that interfere with tumor immune escape. 2) Clinical patient blood routine data were collected for the statistical analysis of peripheral blood immune cells during the progression of oral mucosal carcinogenesis. Immune cells in peripheral blood that may affect the progression of oral mucosal carcinogenesis were screened. 3) Immunohistochemical staining was performed on intrinsic immune cells and immune-checkpoint molecules validated based on data calculation in various stages of oral mucosal carcinogenesis. 4) Special staining was used to identify innate immune cells in various stages of oral mucosal carcinogenesis based on data-calculation verification. 5) Survival analysis was conducted on intrinsic immune cells and immune-checkpoint molecules validated based on data calculation during the process of oral mucosal carcinogenesis. The association of intrinsic immune cells and immune-checkpoint molecules with the prognosis of oral squamous cell carcinoma was verified. RESULTS: The expression of monocytes and neutrophils increased during the process of oral mucosal carcinogenesis. The expression of eosinophils showed a single peak trend of up and down. The expression of mast cells decreased. In the process of oral mucosal carcinogenesis, the expression of the immune-checkpoint molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death-ligand (PD-L1) increased. The expression trends of monocytes, neutrophils, and eosinophils were positively correlated with those of CTLA4 and PD-L1 immune-checkpoint molecules. The expression trend of mast cells was negatively correlated with the expression of CTLA4 and PD-L1. Monocytes, neutrophils, and eosinophils may promote tumor immune escape mediated by CTLA4 and/or PD-L1, thereby accelerating the progression of oral mucosal carcinogenesis. Mast cells may inhibit tumor immune escape mediated by CTLA4 and/or PD-L1, delaying the progression of oral mucosal carcinogenesis. CONCLUSIONS: Therefore, interference with specific immune cells in innate immunity can regulate the expression of CTLA4 and/or PD-L1 to a certain extent, inhibit tumor immune escape, and delay the progression of oral mucosal carcinogenesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Checkpoint Imunológico , Carcinogênese , Imunidade Inata
2.
Front Immunol ; 15: 1384548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533512

RESUMO

Introduction: Colorectal cancer (CRC) presents a substantial challenge characterized by unacceptably high mortality and morbidity, primarily attributed to delayed diagnosis and reliance on palliative care. The immune response of the host plays a pivotal role in carcinogenesis, with IL-38 emerging as a potential protective factor in CRC. However, the precise involvement of IL-38 among various leucocytes, its interactions with PD-1/PD-L1, and its impact on metastasis require further elucidation. Results: Our investigation revealed a significant correlation between IL-38 expression and metastasis, particularly concerning survival and interactions among diverse leucocytes within draining lymph nodes. In the mesentery lymph nodes, we observed an inverse correlation between IL-38 expression and stages of lymph node invasions (TNM), invasion depth, distance, and differentiation. This aligns with an overall survival advantage associated with higher IL-38 expression in CRC patients' nodes compared to lower levels, as well as elevated IL-38 expression on CD4+ or CD8+ cells. Notably, a distinct subset of patients characterized by IL-38high/PD-1low expression exhibited superior survival outcomes compared to other combinations. Discussion: Our findings demonstrate that IL-38 expression in colorectal regional nodes from CRC patients is inversely correlated with PD-1/PD-L1 but positively correlated with infiltrating CD4+ or CD8+ lymphocytes. The combined assessment of IL-38 and PD-1 expression in colorectal regional nodes emerges as a promising biomarker for predicting the prognosis of CRC.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno CTLA-4/metabolismo , Relevância Clínica , Fatores de Transcrição Forkhead/metabolismo , Linfonodos , Interleucinas/metabolismo
3.
Neurochem Res ; 49(5): 1359-1372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366208

RESUMO

Spinal cord injury (SCI) encompasses various pathological processes, notably neuroinflammation and apoptosis, both of which play significant roles. CTLA-4, a well-known immune molecule that suppresses T cell-mediated immune responses, is a key area of research and a focal point for targeted therapy development in treating tumors and autoimmune disorders. Despite its prominence, the impact of CTLA-4 inhibition on inflammation and apoptosis subsequent to SCI remains unexplored. This study aimed to investigate the influence of CTLA-4 on SCI. A weight-drop technique was used to establish a rat model of SCI. To examine the safeguarding effect of CTLA-4 on the restoration of motor function in rats with SCI, the Basso-Beattie-Bresnahan (BBB) scale and inclined plane test were employed to assess locomotion. Neuronal degeneration and apoptosis were assessed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) and Fluoro-Jade B labeling, respectively, and the activity of microglial cells was examined by immunofluorescence. To evaluate the impact of CTLA4 on SCI, the levels of inflammatory markers were measured. After treatment with the CTLA-4 inhibitor ipilimumab, the rats showed worse neurological impairment and more severe neuroinflammation after SCI. Furthermore, the combination therapy with ipilimumab and durvalumab after SCI had more pronounced effects than treatment with either inhibitor alone. These findings indicate that CTLA-4 contributes to neuroinflammation and apoptosis after SCI, presenting a promising new therapeutic target for this traumatic condition.


Assuntos
Antígeno CTLA-4 , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Ratos , Apoptose , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Inflamação/patologia , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Doenças Neuroinflamatórias/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
4.
Front Immunol ; 15: 1292158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333213

RESUMO

Due to the intracellular expression of Foxp3 it is impossible to purify viable Foxp3+ cells on the basis of Foxp3 staining. Consequently CD4+Foxp3+ regulatory T cells (Tregs) in mice have mostly been characterized using CD4+CD25+ T cells or GFP-Foxp3 reporter T cells. However, these two populations cannot faithfully represent Tregs as the expression of CD25 and Foxp3 does not completely overlap and GFP+Foxp3+ reporter T cells have been reported to be functionally altered. The aim of this study was to characterize normal Tregs without separating Foxp3+ and Foxp3- cells for the expression of the main functional molecules and proliferation behaviors by flow cytometry and to examine their gene expression characteristics through differential gene expression. Our data showed that the expressions of Foxp3, CD25, CTLA-4 (both intracellular and cell surface) and PD-1 was mostly confined to CD4+ T cells and the expression of Foxp3 did not completely overlap with the expression of CD25, CTLA-4 or PD-1. Despite higher levels of expression of the T cell inhibitory molecules CTLA-4 and PD-1, Tregs maintained higher levels of Ki-67 expression in the homeostatic state and had greater proliferation in vivo after allo-activation than Tconv. Differential gene expression analysis revealed that resting Tregs exhibited immune activation markers characteristic of activated Tconv. This is consistent with the flow data that the T cell activation markers CD25, CTLA-4, PD-1, and Ki-67 were much more strongly expressed by Tregs than Tconv in the homeostatic state.


Assuntos
Fatores de Transcrição Forkhead , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Animais , Camundongos , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Antígeno Ki-67/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
5.
Immunity ; 57(2): 223-244, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354702

RESUMO

Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.


Assuntos
Doenças Autoimunes , Antígenos CD28 , Humanos , Antígenos CD28/metabolismo , Amigos , Linfócitos T , Antígeno CTLA-4/metabolismo , Imunoterapia , Antígeno B7-1/metabolismo , Imunoglobulinas/metabolismo , Butirofilinas/metabolismo , Antígenos CD/metabolismo
6.
Cell Death Dis ; 15(2): 140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355725

RESUMO

Immune checkpoints (CTLA4 & PD-1) are inhibitory pathways that block aberrant immune activity and maintain self-tolerance. Tumors co-opt these checkpoints to avoid immune destruction. Immune checkpoint inhibitors (ICIs) activate immune cells and restore their tumoricidal potential, making them highly efficacious cancer therapies. However, immunotolerant organs such as the liver depend on these tolerogenic mechanisms, and their disruption with ICI use can trigger the unintended side effect of hepatotoxicity termed immune-mediated liver injury from ICIs (ILICI). Learning how to uncouple ILICI from ICI anti-tumor activity is of paramount clinical importance. We developed a murine model to recapitulate human ILICI using CTLA4+/- mice treated with either combined anti-CTLA4 + anti-PDL1 or IgG1 + IgG2. We tested two forms of antisense oligonucleotides to knockdown caspase-3 in a total liver (parenchymal and non-parenchymal cells) or in a hepatocyte-specific manner. We also employed imaging mass cytometry (IMC), a powerful multiplex modality for immunophenotyping and cell interaction analysis in our model. ICI-treated mice had significant evidence of liver injury. We detected cleaved caspase-3 (cC3), indicating apoptosis was occurring, as well as Nod-like receptor protein 3 (NLRP3) inflammasome activation, but no necroptosis. Total liver knockdown of caspase-3 worsened liver injury, and induced further inflammasome activation, and Gasdermin-D-mediated pyroptosis. Hepatocyte-specific knockdown of caspase-3 reduced liver injury and NLRP3 inflammasome activation. IMC-generated single-cell data for 77,692 cells was used to identify 22 unique phenotypic clusters. Spatial analysis revealed that cC3+ hepatocytes had significantly closer interactions with macrophages, Kupffer cells, and NLRP3hi myeloid cells than other cell types. We also observed zones of three-way interaction between cC3+ hepatocytes, CD8 + T-cells, and macrophages. Our work is the first to identify hepatocyte apoptosis and NLRP3 inflammasome activation as drivers of ILICI. Furthermore, we report that the interplay between adaptive and innate immune cells is critical to hepatocyte apoptosis and ILICI.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno CTLA-4/metabolismo , Caspase 3/metabolismo , Fígado/metabolismo , Apoptose , Hepatócitos/metabolismo , Comunicação Celular
7.
Cancer Immunol Immunother ; 73(2): 36, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280003

RESUMO

INTRODUCTION: Cadonilimab (AK104) is a first-in-class tetravalent bispecific antibody that targets both PD-1 and CTLA-4, showing a manageable safety profile and favorable clinical benefits. This study aimed to identify the biomarkers of clinical response and explore the immune response within the tumor microenvironment upon the AK104 therapy in advanced solid tumors. MATERIAL AND METHODS: Gene expression profiles of paired pre- and post-treatment tumor tissues from twenty-one patients were analyzed. The association of gene expression levels with either clinical efficacy or prognosis was evaluated and subsequently validated with published datasets using log-rank for Kaplan-Meier estimates. Comparative immune profile analyses of tumor microenvironment before and after AK104 treatment were conducted. The visualization of tumor-infiltrating lymphocytes was performed using multiplex immunohistochemistry. The predictive value of CD74 was further validated with protein expression by immunohistochemistry. RESULTS: Baseline CD74 gene expression was associated with favorable patient outcomes (overall survival [OS], HR = 0.33, 95% CI 0.11-1.03, p = 0.0463), which was further confirmed with the published datasets. Tumors with high CD74 gene expression at baseline were more likely to exhibit an immune-inflamed microenvironment. AK104 efficiently enhanced the infiltration of immune cells in the tumor microenvironment. Additionally, high CD74 protein expression (≥ 10% of the tumor area occupied by CD74 stained immune cells) at baseline was associated with better progressive-free survival (HR = 0.21, 95% CI 0.06-0.68, p = 0.0065) and OS (HR = 0.35, 95% CI 0.12-1.08, p = 0.0615). CONCLUSIONS: Our findings demonstrate that CD74 is a promising predictive biomarker for AK104 therapeutic response in advanced solid tumors. Trial registration number NCT03261011.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Biomarcadores Tumorais/metabolismo , Antígeno CTLA-4/metabolismo , Linfócitos do Interstício Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
Int Immunopharmacol ; 126: 111186, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37979454

RESUMO

The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Imunoterapia/efeitos adversos , Antígeno CTLA-4/metabolismo , Linfócitos T , Antígeno B7-H1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia
9.
Appl Immunohistochem Mol Morphol ; 32(2): 71-83, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108390

RESUMO

BACKGROUND: Colorectal cancer is considered the third most prevalent cancer in both sexes. Immune checkpoint receptors that regulate T-cell response, stimulation, and development include lymphocyte activating gene 3 (LAG-3), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and T-cell immunoglobulin and mucin domain 3 (Tim-3). In addition, they are crucial for the advancement of cancer and tumor immune escape. OBJECTIVE: This work's aim was to assess the immunohistochemistry expression of Tim-3, CTLA-4, and LAG-3 in cancer cells and tumor-infiltrating lymphocytes (TILs) in colorectal cancer (CRC) and the correlation between these markers and clinicopathological variables and survival data. METHODS: This study involved 206 CRC specimens processed for CTLA-4, LAG3, and TIM-3 immunohistochemistry and correlated with the clinicopathological and survival parameters of the patients. RESULTS: High CTLA-4 epithelial expression was highly related to the old age group, large tumor size, low tumor-stroma ratio (TSR), high grade, advanced stage, the presence of distant metastasis (DM), perineural invasion (PNI), necrosis, lymphovascular invasion (LVI), relapse, mortality, overall survival (OS), and disease-free survival (DFS), while negative CTLA-4 TILs expression was highly linked with the presence of gross perforation, low TSR, high tumor budding (TB) score, high grade, advanced stage, the existence of lymph node (LN) metastasis, DM, necrosis, LVI, PNI, DFS, mortality, and OS. Positive LAG-3 TILs expression was highly correlated with large tumor size, gross perforation, low TSR, high TB score, high grade, advanced phase, the presence of LN, necrosis, LVI, PNI, relapse DFS, mortality, and OS. High Tim-3 epithelial expression was extremely linked with low TSR, advanced phase, the presence of LN, LVI, PNI, relapse, DFS, mortality, and OS, while positive Tim-3 TILs expression was related to gross perforation, low TSR, high TB score, advanced stage, the presence of LN, DM, necrosis, relapse, DFS, mortality, and OS. CONCLUSIONS: The patients' poor prognosis may be related to the immunohistochemistry expression of LAG-3, Tim-3, and CTLA-4 in CRC cancer tissue and TILs. Poor patient consequences can result from the CTLA-4, Tim-3, and LAG-3 co-expression, but CTLA-4 TILs' expression of these proteins may inhibit the growth of tumors.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Masculino , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Antígeno CTLA-4/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neoplasias Colorretais/patologia , Recidiva , Necrose/metabolismo
10.
Cells ; 12(23)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067117

RESUMO

Cellular composition and the responsiveness of the immune system evolve upon aging and are influenced by biological sex. CD4+ T cells from women living with HIV exhibit a decreased viral replication ex vivo compared to men's. We, thus, hypothesized that these findings could be recapitulated in vitro and infected primary CD4+ T cells with HIV-based vectors pseudotyped with VSV-G or HIV envelopes. We used cells isolated from twenty donors to interrogate the effect of sex and age on permissiveness over a six-day activation kinetics. Our data identified an increased permissiveness to HIV between 24 and 72 h post-stimulation. Sex- and age-based analyses at these time points showed an increased susceptibility to HIV of the cells isolated from males and from donors over 50 years of age, respectively. A parallel assessment of surface markers' expression revealed higher frequencies of activation marker CD69 and of immune checkpoint inhibitors (PD-1 and CTLA-4) in the cells from highly permissive donors. Furthermore, positive correlations were identified between the expression kinetics of CD69, PD-1 and CTLA-4 and HIV expression kinetics. The cell population heterogeneity was assessed using a single-cell RNA-Seq analysis and no cell subtype enrichment was identified according to sex. Finally, transcriptomic analyses further highlighted the role of activation in those differences with enriched activation and cell cycle gene sets in male and older female cells. Altogether, this study brought further evidence about the individual features affecting HIV replication at the cellular level and should be considered in latency reactivation studies for an HIV cure.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/virologia , Antígeno CTLA-4/metabolismo , Infecções por HIV/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Replicação Viral/fisiologia , Fatores Etários , Fatores Sexuais , HIV/fisiologia
11.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947636

RESUMO

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Assuntos
Neoplasias , Linfócitos T , Camundongos , Animais , Antígeno CTLA-4/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Imunoterapia
12.
J Physiol ; 601(23): 5437-5451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860942

RESUMO

Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Endossomos/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Água/metabolismo , Fosforilação
13.
Cancer Cell ; 41(11): 1892-1910.e10, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863068

RESUMO

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Antígeno CTLA-4/metabolismo , Microambiente Tumoral/genética , Macrófagos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia
14.
J Transl Med ; 21(1): 721, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838657

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) development may be associated with tumor immune escape. This study explores whether the CHI3L1/MAF/CTLA4/S100A4 axis affects immune escape in TNBC through interplay with triple-negative breast cancer stem cells (TN-BCSCs). OBJECTIVE: The aim of this study is to utilize single-cell transcriptome sequencing (scRNA-seq) to uncover the molecular mechanisms by which the CHI3L1/MAF/CTLA4 signaling pathway may mediate immune evasion in triple-negative breast cancer through the interaction between tumor stem cells (CSCs) and immune cells. METHODS: Cell subsets in TNBC tissues were obtained through scRNA-seq, followed by screening differentially expressed genes in TN-BCSCs and B.C.s (CD44+ and CD24-) and predicting the transcription factor regulated by CHI3L1. Effect of CHI3L1 on the stemness phenotype of TNBC cells investigated. Effects of BCSCs-231-derived CHI3L1 on CTLA4 expression in T cells were explored after co-culture of BCSCs-231 cells obtained from microsphere culture of TN-BCSCs with T cells. BCSCs-231-treated T cells were co-cultured with CD8+ T cells to explore the resultant effect on T cell cytotoxicity. An orthotopic B.C. transplanted tumor model in mice with humanized immune systems was constructed, in which the Role of CHI3L1/MAF/CTLA4 in the immune escape of TNBC was explored. RESULTS: Eight cell subsets were found in the TNBC tissues, and the existence of TN-BCSCs was observed in the epithelial cell subset. CHI3L1 was related to the stemness phenotype of TNBC cells. TN-BCSC-derived CHI3L1 increased CTLA4 expression in T cells through MAF, inhibiting CD8+ T cell cytotoxicity and inducing immunosuppression. Furthermore, the CTLA4+ T cells might secrete S100A4 to promote the stemness phenotype of TNBC cells. CONCLUSIONS: TN-BCSC-derived CHI3L1 upregulates CTLA4 expression in T cells through MAF, suppressing the function of CD8+ T cells, which promotes the immune escape of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Antígeno CTLA-4/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/metabolismo
15.
Curr Opin Allergy Clin Immunol ; 23(6): 461-466, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767915

RESUMO

PURPOSE OF REVIEW: Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS: Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY: Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.


Assuntos
Imunodeficiência de Variável Comum , Fosfatidilinositol 3-Quinases , Humanos , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/terapia , Autoimunidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
16.
Immunity ; 56(10): 2388-2407.e9, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776850

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Linfócitos T , Imunoterapia Adotiva , Antígenos CD19
17.
Immunol Res ; 71(6): 959-971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37583002

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death globally. In this study, the effect of complete removal of mediastinal lymph nodes by video-assisted mediastinoscopic lymphadenectomy (VAMLA) on natural killer (NK) cell phenotype and functions in patients with NSCLC was evaluated. The study included 21 NSCLC patients (cIA-IVA) undergoing VAMLA staging and 33 healthy controls. Mononuclear cells were isolated from peripheral blood of all participants and mediastinal lymph nodes of the patients. NK cells were analyzed by flow cytometry to define NK subsets, expressions of PD-1, CTLA-4, activating/inhibitory receptors, granzyme A, and CD107a. The plasma levels of soluble PD-1, PDL-1, and CTLA-4 were measured by ELISA. Mediastinal lymph nodes of NSCLC patients had increased ratios of exhausted NK cells, increased expression of PD-1 and IL-10, and impaired cytotoxicity. Mediastinal lymph nodes removal increased CD56dimCD16bright cytotoxic effector phenotype and reduced exhausted NK cells. PD-1+ NK cells were significantly more abundant in patients' blood, and VAMLA significantly reduced their ratio as well. The ratio of IL-10 secreting regulatory NK cells was also reduced after VAMLA. Blood NK cells had increased cytotoxic functions and spontaneous IFN-γ secretion, and these NK cell functions were also recovered by VAMLA. Mediastinal lymph node removal reversed NK cell exhaustion, reduced regulatory NK cells, and improved antitumoral functions of NK cells. Tumor-draining lymph nodes may contribute to tumor evasion from antitumoral immune responses. The role of their removal needs to be further studied both to better understand this mechanism and as a potential immunotherapeutic approach.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Interleucina-10/metabolismo , Antígeno CTLA-4/metabolismo , Neoplasias Pulmonares/cirurgia , Receptor de Morte Celular Programada 1/metabolismo , Excisão de Linfonodo , Linfonodos/patologia , Células Matadoras Naturais , Antígeno CD56/metabolismo
18.
Circ Res ; 133(4): 298-312, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37435729

RESUMO

BACKGROUND: Giant cell arteritis (GCA) causes severe inflammation of the aorta and its branches and is characterized by intense effector T-cell infiltration. The roles that immune checkpoints play in the pathogenesis of GCA are still unclear. Our aim was to study the immune checkpoint interplay in GCA. METHODS: First, we used VigiBase, the World Health Organization international pharmacovigilance database, to evaluate the relationship between GCA occurrence and immune checkpoint inhibitors treatments. We then further dissected the role of immune checkpoint inhibitors in the pathogenesis of GCA, using immunohistochemistry, immunofluorescence, transcriptomics, and flow cytometry on peripheral blood mononuclear cells and aortic tissues of GCA patients and appropriated controls. RESULTS: Using VigiBase, we identified GCA as a significant immune-related adverse event associated with anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) but not anti-PD-1 (anti-programmed death-1) nor anti-PD-L1 (anti-programmed death-ligand 1) treatment. We further dissected a critical role for the CTLA-4 pathway in GCA by identification of the dysregulation of CTLA-4-derived gene pathways and proteins in CD4+ (cluster of differentiation 4) T cells (and specifically regulatory T cells) present in blood and aorta of GCA patients versus controls. While regulatory T cells were less abundant and activated/suppressive in blood and aorta of GCA versus controls, they still specifically upregulated CTLA-4. Activated and proliferating CTLA-4+ Ki-67+ regulatory T cells from GCA were more sensitive to anti-CTLA-4 (ipilimumab)-mediated in vitro depletion versus controls. CONCLUSIONS: We highlighted the instrumental role of CTLA-4 immune checkpoint in GCA, which provides a strong rationale for targeting this pathway.


Assuntos
Antígeno CTLA-4 , Arterite de Células Gigantes , Humanos , Aorta , Inibidores de Checkpoint Imunológico , Leucócitos Mononucleares , Linfócitos T Reguladores , Antígeno CTLA-4/metabolismo
19.
Nat Cancer ; 4(9): 1292-1308, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525015

RESUMO

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


Assuntos
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapêutico , Antígeno CTLA-4/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética
20.
Hum Immunol ; 84(10): 534-542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453913

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) is considered as a promising approach for cancer treatment. However, the potency of ICB therapy in yolk sac tumors (YSTs) has not been confirmed, and the comprehensive analysis of tumor immune microenvironment and the expression of PD-1/PD-L1 and CTLA4 were also not thoroughly evaluated. METHODS: Immunohistochemistry was performed in formalin-fixed, paraffin-embedded tumor specimens from 23 YSTs patients to detect the density and distribution of tumor-infiltrating T cells, tertiary lymphoid structures (TLSs), as well as the expression of PD-1/PD-L1 and CTLA4. RESULTS: Overall, more than half (61 %) of all patients exhibited an immune-desert phenotype based on CD3+ T cells. PD-1 expression was identified in five tumor samples (21.7 %), and PD-L1 expression exhibited a different positive rate in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) (39.1 % and 17.4 %). Noteworthily, the rate of positive CTLA4 expression in both TCs and TILs was markedly higher (69.6 % and 56.5 %) than those of PD-1 and PD-L1 expression. Furthermore, TLSs were observed in 21.74 % of all tissues, and samples with TLSs exhibited significantly higher densities of TILs and higher expression of immune checkpoint molecules, particularly PD-1/PD-L1. In addition, tumors located in testes also exhibited a higher density of TILs and higher expression of immune checkpoint molecules. CONCLUSION: Generally a high frequency of CTLA4 expression was found, PD-1/PD-L1 expression, the immune-inflamed phenotype, and TLSs were low frequency in YSTs, however, YSTs in testes showed a higher density of TILs and higher expression of immune checkpoint molecules.


Assuntos
Tumor do Seio Endodérmico , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Tumor do Seio Endodérmico/metabolismo , Tumor do Seio Endodérmico/patologia , Proteínas de Checkpoint Imunológico/metabolismo , Linfócitos do Interstício Tumoral , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...